Tools and AI in stylistic analysis

A systematic literature review

  • Fahmi Alhubilah Universitas Pendidikan Indonesia
  • Asep Sopian Universitas Pendidikan Indonesia

Abstract

This research constitutes a systematic literature review that investigates the application of tools and Artificial Intelligence (AI) in stylistic analysis. The objective of the evaluation is to identify the various types of tools and AI utilized in stylistics and to assess their respective advantages and disadvantages in facilitating language analysis. Since the selection of data sources is critical, the relevance of each article was carefully assessed to ensure analytical accuracy and applicability of the findings. Utilizing the Systematic Literature Review (SLR) methodology, nine pertinent articles published between 2015 and 2025 were examined according to specific inclusion criteria. The study’s findings reveal that tools such as Voyant Tools, WordSmith, LIWC, and StyloMetrix are extensively employed to analyze linguistic and stylometric characteristics across different text types, including poetry, emails, and texts generated by AI. While AI has demonstrated its ability to improve efficiency, objectivity, and analytical depth, it continues encountering difficulties in capturing linguistic subtleties and cultural contexts. This study advocates for a collaborative approach between humans and AI to achieve more thorough and precise stylistic analyses in education, literature, and forensic linguistics.

Downloads

Download data is not yet available.

References

Ahmadi, A. (2025). AI integration in the study of literary criticism in the Indonesian language education program. Prosiding Sandibahasa Seminar Nasional Pendidian Bahasa dan Sastra Indonesia, 3(1), 19-27. https://ojs.mahadewa.ac.id/index.php/sandibasa/article/view/4743

AlAfnan, M. A., & MohdZuki, S. F. (2023). Do artificial intelligence chatbots have a writing style? An investigation into the stylistic features of ChatGPT-4. Journal of Artificial Intelligence and Technology. https://doi.org/10.37965/jait.2023.0267

Algaraady, J., & Mahyoob, M. (2025). Exploring ChatGPT’s potential for augmenting post-editing in machine translation across multiple domains: Challenges and opportunities. Frontiers in Artificial Intelligence, 8. https://doi.org/10.3389/frai.2025.1526293

Andini, R. S., Lorise, G., Kurniawan, S., Panggabean, E. Y., Khansa, S. N., & Rangkuti, R. (2023). Forensic stylistic analysis on University of Airlangga’s veterinary medicine student’s suicide notes. Titian: Jurnal Ilmu Humaniora, 07(02), 302–315. https://doi.org/https://doi.org/10.22437/titian.v7i2.29381

Battles, P. (2019). Using N-gram analysis to map intertextual networks in old English verse. Digital Philology: A Journal of Medieval Cultures, 8(2), 155–191. https://doi.org/10.1353/dph.2019.0022

Bories, A.-S., Plecháč, P., & Ruiz Fabo, P. (Eds.). (2022). Computational stylistics in poetry, prose, and drama. De Gruyter. https://doi.org/10.1515/9783110781502

Chan, C. K. Y., & Wong, H. Y. H. (2025). Assessing the ability of generative AI in English literary analysis through Bloom’s Taxonomy. Discover Computing, 28(1), 127. https://doi.org/10.1007/s10791-025-09572-8

de Castro, M. C. (2018). O uso da Lista de Consistência Detalhada (Detailed Consistency List) do WordSmith Tools© 6.0 para a investigação do perfil estilístico de quatro tradutores de Heart of Darkness para o Espanhol / The use of the detailed consistency list of Wordsmith Tools . Texto Livre Linguagem e Tecnologia, 11(1), 1–23. https://doi.org/10.17851/1983-3652.11.1.1-23

Eder, M., & Górski, R. L. (2022). Stylistic fingerprints, POS-tags, and Inflected Languages: A case study in Polish. Journal of Quantitative Linguistics, 30(1), 86–103. https://doi.org/10.1080/09296174.2022.2122751

Febrina, E., Sitepu, B., Manao, K. C., Orinda, N., Sitompul, B., Situmeang, A. L., Gaol, S. L., Riah, I., Surbakti, U., & Ranggkuti, R. (2023). A stylistic forensic analysis of Mahira’s suicade notes. Journal on Education, 06(01), 10580–10585. https://doi.org/https://doi.org/10.31004/joe.v6i1.4792

Gomathi, R. D., Murugan, J., Kavitha, P., & Gomathi, B. S. (2025). AI-driven literary analysis: Exploring the impact of artificial intelligence on text interpretation and criticism. Journal of Machine and Computing, 1124–1139. https://doi.org/10.53759/7669/jmc202505089

Hamidi, G. D., Bestari, F. A., Situmorang, A., & Rakhmawati, N. A. (2021). Sentiment analysis on the ratification of Penghapusan Kekerasan Seksual Bill on Twitter. Jurnal Teknik Informatika dan Sistem Informasi, 7(3), 655 –. https://doi.org/10.28932/jutisi.v7i3.4051

Herrmann, J. B., Jacobs, A. M., & Piper, A. (2021). Computational stylistics. In Handbook of Empirical Literary Studies (pp. 451–486). De Gruyter. https://doi.org/10.1515/9783110645958-018

Hosni, J. Al. (2024). Stylometric analysis of AI Chatbot-Generated emails: Are students losing their linguistic fingerprint? Journal of English Language Teaching and Applied Linguistics, 6(3), 33–42. https://doi.org/10.32996/jeltal.2024.6.3.5

Howedi, F., Mohd, M., Aborawi, Z. A., & Jowan, S. A. (2020). Authorship attribution of short historical arabic texts using stylometric features and a KNN classifier with limited training data. Journal of Computer Science, 16(10), 1334–1345. https://doi.org/10.3844/jcssp.2020.1334.1345

Huda, M., & Suwahyu, I. (2024). Peran Artificial Intelligence (AI) dalam pembelajaran pendidikan agama islam. REFERENSI ISLAMIKA Jurnal Studi Islam, 2(2), 53–61. https://doi.org/10.61220/ri.v2i2.005

Jose, J. & Simritha, R. (2024). Sentiment analysis and topic classification with LSTM Networks and TextRazor. International Journal of Data Informatics and Intelligent Computing, 3(2), 42–51. https://doi.org/10.59461/ijdiic.v3i2.115

Kairaitytė-Užupė, A., Ramanauskaitė, E., & Rudžionis, V. (2023). Scientific information analysis using text analysis tool “Voyant Tools.” Information & Media, 97, 25–48. https://doi.org/10.15388/im.2023.97.57

Kumar, S. M. (2025). AI and the evolution of creative writing: From generative text to literary innovation. International Journal of Scientific Research and Engineering Trends, 11(2), 2814–2817. https://doi.org/10.61137/ijsret.vol.11.issue2.468

Li, M., & Li, D. (2025). Human expertise vs AI efficiency. In Translation Studies in the Age of Artificial Intelligence (pp. 150–171). Routledge. https://doi.org/10.4324/9781003482369-8

Liu, Y., Wang, G., & Wang, H. (2024). Reimagining literary analysis: Utilizing Artificial Intelligence to classify modernist French poetry. Information, 15(2), 70. https://doi.org/10.3390/info15020070

Lahay, M., Ibrahim, R. A., Djuaeni, N., & Damhuri. (2024). Studi komparatif rima dan saja’ dalam Stilistika. AL-KILMAH, 3(1), 51–62. https://doi.org/10.58194/alkilmah.v3i1.1856

Nafisah, N., Sauri, S., & Nurbayan, Y. (2022). Al-akhṭā’u al-ṣautiyah fī qirā’ati al-nuṣūsi al-‘Arabiyyah bi istikhdāmi taṭbīqāti Praat. ALSUNIYAT: Jurnal Penelitian Bahasa, Sastra, Dan Budaya Arab, 5(1), 30–45. https://doi.org/10.17509/alsuniyat.v5i1.41710

Okulska, I., Stetsenko, D., Kołos, A., Karlińska, A., Głąbińska, K., & Nowakowski, A. (2023b). StyloMetrix: An open-source multilingual tool for representing stylometric vectors. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2309.12810

Omar, L. I., & Salih, A. A. (2024). Systematic review of English/Arabic machine translation postediting: Implications for AI application in translation research and pedagogy. Informatics, 11(2), 23. https://doi.org/10.3390/informatics11020023

Patawari, M. Y. (2019). Stylometry: Statistical approach into film style. Capture Jurnal Seni Media Rekam, 10(2), 71–90. https://doi.org/10.33153/capture.v10i2.2451

Prabowo, B., & Asmarani, R. (2025). Generative literature: The role of artificial intelligence in the creative writing process. Allure Journal, 5(1), 1–9. https://doi.org/10.26877/allure.v5i1.19959

Rapi, M. (2025). Interpreting literature through an AI lens (pp. 97–122). https://doi.org/10.4018/979-8-3373-1057-2.ch005

Rujeedawa, M. I. H., Pudaruth, S., & Malele, V. (2025). Unmasking AI-generated texts using linguistic and stylistic features. International Journal of Advanced Computer Science and Applications, 16(3). https://doi.org/10.14569/IJACSA.2025.0160321

Salsabila, T. H., Indrawati, T. M., & Fitrie, R. A. (2024). Meningkatkan efisiensi pengambilan keputusan publik melalui kecerdasan buatan. Deleted Journal, 1(2), 21. https://doi.org/10.47134/pjise.v1i2.2401

Sobchuk, O., & Šeļa, A. (2024). Computational thematics: Comparing algorithms for clustering the genres of literary fiction. Humanit Soc Sci Commun, 11, 438. https://doi.org/10.1057/s41599-024-02933-6

Söğüt, S. (2024). Generative artificial intelligence in EFL writing: A pedagogical stance of pre-service teachers and teacher trainers. Focus on ELT Journal, 58–73. https://doi.org/10.14744/felt.6.1.5

Syafar, D. N., & Febrina, R. (2019). Computational linguistics models and language technologies for Indonesian. JURNAL ARBITRER, 6(1), 45–52. https://doi.org/10.25077/ar.6.1.45-52.2019

Tomczyk, P., Brüggemann, P., Mergner, N., & Petrescu, M. (2024). Are AI tools better than traditional tools in literature searching? Evidence from E-commerce research. Journal of Librarianship and Information Science. https://doi.org/10.1177/09610006241295802

Tripto, N. I., & Ali, M. E. (2023). The Word2vec graph model for author attribution and genre detection in literary analysis. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2310.16972

Wachyudi, K. (2022). Penggunaan Voyant Tools dalam pembelajaran bahasa Inggris. Educatio, 8(4), 1661–1668. https://doi.org/10.31949/educatio.v8i4.3427

Wijayono, A., & Putra, V. G. V. (2018). Implementation of image analysis techniques for various textile identification. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1810.06423

Yadav, D. (2024). The role of artificial intelligence in literary analysis: A computational approach to understand literary styles. International Journal of Emerging Knowledge Studies, 03(09), 558–565. https://doi.org/10.70333/ijeks-03-09-006

Zawacki‐Richter, O., Kerres, M., Bedenlier, S., Bond, M., & Buntins, K. (2019). Systematic reviews in educational research. In Springer eBooks. Springer Nature. https://doi.org/10.1007/978-3-658-27602-7
Published
2025-12-31
How to Cite
ALHUBILAH, Fahmi; SOPIAN, Asep. Tools and AI in stylistic analysis. Pioneer: Journal of Language and Literature, [S.l.], v. 17, n. 2, p. 189-205, dec. 2025. ISSN 2655-8718. Available at: <https://unars.ac.id/ojs/index.php/pioneer/article/view/6415>. Date accessed: 29 jan. 2026. doi: https://doi.org/10.36841/pioneer.v17i2.6415.
Section
Articles

Most read articles by the same author(s)