RANCANG BANGUN SMART MINI PLANT FACTORY BERBASIS BERBASIS IoT UNTUK BUDIDAYA PERSEMAIAN SAYUR SELADA HIJAU (Lactuca sativa L.)
Abstract
Abstrak
Perkembangan penerapan pertanian presisi sangat pesat di seluruh penjuru dunia, ciri utama sistem pertanian ini adalah bertani dapat dilakukan dimanapun dan kapanpun. Indonesia adalah negara tropis, hampir seluruh proses bertani yang dilakukan bergantung pada iklim, akibatnya ketika kondisi iklim tidak sesuai maka akan terjadi kelangkaan komoditi dipasaran dan bisa dipastikan harga komoditi tersebut akan sangat mahal. Penelitian ini bertujuan untuk membuat mini plant factory sebagai langkah awal pengembangan pertanian presisi di indonesia. Hasil uji performa alat yang dilakukan antara lain: uji akurasi sensor, uji performa sebaran cahaya LED dan uji running IoT alat, hasilnya didapat akurasi di atas 95%. Pengamatan dilakukan terhadap 60 tanaman selama 14 hari, hasil pertumbuhan tanaman persemaian pada mini plant factory lebih baik secara umum jika dibandingkan dengan tanaman pada persemaian konvensional dengan selisih sangat sedikit dengan perbedaan 0,84 cm pada data panjang akar, untuk detail data didapat data secara berurutan: tinggi tanaman kontrol 2,565 cm dan tanaman semai di dalam mini plant factory rata-rata tingginya adalah 2,1 cm, Jumlah daun persemaian 4,43 cm pada budidaya di dalam mini plant factory dan 4,44 cm pada tanaman kontrol dan panjang daun tanaman kontrol 1,08 cm sedang pada budidaya di dalam mini plant factory 1,39 cm.
Kata kunci: Komoditi Sayuran, Media Tanam, Pertanian Presisi, Rockwool, Uji Performa.
Downloads
References
Gardner, F. P., Pearce, R. B., and Mitchell, R. L. (1991). Fisiologi Tanaman Budidaya Fisiologi Tanaman Budidaya. Terjemahan oleh Herawati Susilo , Jakarta: Universitas Indonesia (UI-Press), 2008
Hu, W. P., Lin, C. B., Yang, C. Y., and Hwang, M. S. (2018). A Framework of the Intelligent Plant Factory System. https://doi.org/10.1016/j.procs.2018.04.295
Jerhamre, E., Calberg, C.J.C.C., and Zoest, V.V. (2022). Exploring the susceptibility of smart farming: Identified opportunities and challanges. Smart Agricultural Technology 2 (2022) 1000026, doi.org/10.1016/j.atech.2021.100026
Kozai, T., Niu, G., Takagaki, M. (2016). Ruang Semi Plant-Factory An Indoor Vertical Farming System For Efficient Quality Food Production. ISBN: 978-0-12-801775-3, Elsevier Book Inc
Montoya, A. P., Obando, F. A., Osorio, J. A., Morales, J.G., and Kacira, M. (2020). Design and implementation of low-cost sensor network to monitor environtmental and agronomic variables in plant factory. https://doi.org/10.1016/j.compag.2020.105758
Namee, K., Kamjumpol, C., and Pimsiri, W. (2020). Development of Smart Vegetable Growing Cabinet with IoT, Edge Computing and Cloud Computing. https://doi.org/10.1145/3421558.3421588
Quan, Q., Zhang, X., and Xue. X. Z. (2018). Design and Implementation of a Closed-Loop Plant Factory. https://doi.org/10.1016/j.ifacol.2018.08.203
Ratnaparkhi, S., Khan, S., Arya, C., Khapre, S., Singh, P., Diwakar, M., and Shankar, A. (2020). Smart agriculture sensors in IOT: A review. https://doi.org/10.1016/j.matpr.2020.11.138
Razzak, Md, A., Asaduzzaman, Md., Tanaka, H., and Asao, T. (2022). Effect of supplementing green light to red and blue light on the growth and yield of lettuce in plant factories. https://doi.org/10.1016/j.scienta.2022.111429
Szysmanska, R., Slesak, I., Orzechowska, A., Kruk, J. (2017). Physiological and Biochemical Responses to High Light and Temperature Stress in Plants. ELSEVIER Journal Environtmental and Experimental Botany 139 (2017) 165-177
Tian, W., Ma, Wei., Yang, Q., and Duan, F. (2022). Application status and challenges of machine vision in plant factory. https://doi.org/10.1016/j.inpa.2021.06.003, 195-211
Umam, C., Suhartono., Saputro, E. (2022). Pendekatan Logika Fuzzy dalam Pengontrolan Suhu dan Kelembapan pada Persemaian Otomatis Full Closed System Tanaman Selada Hijau (Lactuca sativa L.). Jurnal Keteknikan Pertanian Tropis dan Biosistem 10(2) 2022, 144-153
Weidner, T., Yang, A., and Hamm, W. (2021). Energy optimisation of plant factories and greenhouse for different climatic conditions. https://doi.org/10.1016/j.enconman.2021.114336
Xu, D., Ahmed, H. A., Tong, Y., Yang, Q., and Van, L.G. (2021). Optimal control as a tool to investigate the profitability of a Chinese plant factory-lettuce production system. https://doi.org/10.1016/j.biosystemeng.2021.05.014
Xu, J., Gu, Baoxing., and Tian, G. (2022). Review of agricultural IoT technology. Xydis, G. A., Liaros, S., and Avgoustaki, D. D. (2020). Small scale Plant Factories with Artificial Lighting and wind energy microgeneration: A multiple revenue stream approach. https://doi.org/10.1016/j.aiia.2022.01.001
Xu, Y., Chang, Y., Chen, G., Lin, H. (2016). The Research on LED Supplementary Lightning System for Plants. ELSEVIER Journal Optik 127 (2016) 7193-7201
Xydis, G. A., Liaros, S., and Avgoustaki, D. D. (2020). Small scale Plant Factories with Artificial Lighting and wind energy microgeneration: A multiple revenue stream approach. https://doi.org/10.1016/j.jclepro.2020.120227
This work is licensed under a Creative Commons Attribution 4.0 International License.